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Abstract. The phonon dispersion curves for perfect crystals of bcc Li, Na, and K are calculated by
theab initio force-constant method in a supercell approach. It is shown that the coupling constants
of Li decay much more slowly in space than those for Na and K, so for Li the phonon spectrum
could not be reliably determined with the supercell sizes used in the calculations. From the phonon
spectra of the perfect supercell and the supercell with a monovacancy the vacancy formation entropy
is calculated for Na(1.36 kB) and K (0.78 kB). Furthermore, the formation energy (0.53, 0.34,
and 0.30 eV) and the formation volume (about 0.5 �0) are obtained for Li, Na, and K, and the
temperature and pressure dependences of the formation entropy and volume are investigated for
the case of Na; a strong decrease of the formation volume with increasing pressure is found. The
migration energies and volumes are determined within the framework of the transition-state theory.
The migration energies are small (about 0.05 eV) for Li, Na, and K, and the migration volumes are
small and negative for Li and Na. The calculated activation energies for self-diffusion (0.58, 0.39,
and 0.35 eV) agree well with experimental data. Neglecting the migration entropy and inserting
Flynn’s ansatzfor the attempt frequency, the absolute values of the self-diffusion coefficients are
determined as a function of temperature. For Na these values agree well with experimental data,
whereas for K the calculated values are too small except for low temperatures.

1. Introduction

In the present paper we report on the results of our calculations of the properties of
monovacancies (1V) in the bcc phases of the alkali metals Li, Na, and K.

It is widely accepted that monovacancies play an important role for self-diffusion in bcc
Li and Na, for the following reasons:

(1) Simultaneous measurements of the macroscopic thermal expansion and lattice parameters
have shown [1–3] that vacancies and not self-interstitials are the dominant intrinsic atomic
defects in thermal equilibrium. A strong contribution of self-interstitials could be excluded
also by theab initio electron theory [4,5] due to the high formation energies.

(2) The data from quasielastic neutron scattering experiments for Na [6] could be consistently
interpreted in terms of a random migration of vacancies and divacancies.

(3) For Li the activation energy of self-diffusion via monovacancies as obtained by the
transition-state theory and theab initio electron theory [7] is in very good agreement with
experimental activation energies for self-diffusion obtained by mass spectroscopy [8] or
NMR experiments [9]. For Na theab initio result [10] agreed very well with the smallest
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activation energy obtained by fitting the data from NMR experiments [11] or radiotracer
experiments [12] with two or three exponentials.

On the other hand, there are some peculiarities of self-diffusion in Li and Na which are
still under discussion:

(i) Most recently it was found by an elastic-recoil-detection analysis for Li [13] and by
radiotracer experiments after24Na implantation for Na [14] that at very low temperatures
the diffusion coefficients are larger than those which would arise if the data for high
temperatures were extrapolated to low temperatures. It was argued [13, 14] that this
enhancement of the self-diffusion is related to the low-temperature martensitic trans-
formation of Li and Na. Corresponding experiments on K would be very interesting
because this material does not exhibit a martensitic transformation.

(ii) Inserting for Na the experimental values forHSD andH f yields a very small value for
the migration enthalpyHm of the order of 2kBTm, whereTm is the melting temperature.
Similar small values forEm

1V/2kBTm were found within the framework of the transition-
state theory and theab initio calculations for monovacancies in Li [7,10] and Na [10]. It
may be argued [15] that for such low values ofEm

1V/2kBTm the notion of discrete vacancy
jumps is no longer valid and that therefore the transition-state theory of self-diffusion [16]
cannot be applied. To check the validity of the transition-state theory for the case of
Na, the migration energy of monovacancies as deduced from the transition-state theory
was compared with the migration energy obtained from a molecular dynamics calculation
of mean square displacements based on volume-dependent pair potentials [17]. A good
agreement was found, but this does not necessarily mean that the transition-state theory can
be applied also for a calculation of the whole self-diffusion coefficientD(T ), especially
its absolute value.

(iii) The kinetic energy factor1K obtained experimentally [12] from the isotope effect
parameter is rather low for the case of Na, and it was argued [15] that this is not
easy to understand if a monovacancy mechanism were to be assumed but that it would
naturally arise for a mechanism of self-diffusion by direct exchange of neighbouring atoms.
However, such a mechanism could be excluded byab initio calculations [10, 18] which
yielded activation energies for the direct exchange in Li and Na which are about a factor
of 3 larger than the experimental activation energies for self-diffusion. An explanation of
the low value of1K in Na is thus still lacking.

(iv) The experimentally obtained activation volumes of Li [19] and Na [12] are smaller than
half of the atomic volume�0. Recent measurements of the NMR linewidth [20, 21]
at room temperature and pressures up to 5 GPa gave hints of a strong decrease of the
activation volumes with increasing pressure, arriving at values of(0.1–0.2) �0 at the
highest applied pressures. (It should be noted that these experiments are very difficult
and that the analysis of these experiments is not on firm theoretical grounds [22]). It was
argued [15] that such low values of the activation volumes are not expected for a mono-
vacancy mechanism.Ab initio calculations of the activation volumes for Li and Na [18]
within the framework of the transition-state theory yielded values which are indeed smaller
than 0.5�0 and which are considerably reduced by a strong external pressure, but there
were quantitative discrepancies between theory and experiment. These discrepancies
may arise from problems related to the analysis of experimental data (see above) or from
inappropriate assumptions of the theory. For instance, it is not clear whether the transition-
state theory may be applied to Li and Na (see above and reference [18]). Furthermore, the
calculations were performed for zero temperature. At finite temperature, contributions
to the formation volume�f and the migration volume�m arising from the pressure
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dependences of the formation and migration entropies may appear, which were neglected
in the calculations of reference [18]).

(v) The temperature dependence of the diffusion constant deviates slightly but distinctly from
an Arrhenius law at high temperatures, and it is tempting to explain this behaviour by
a contribution of divacancies (2V) at high temperatures. This problem is considered in
part II of the paper.

In the present paper we complete our formerab initio studies [4, 5, 7, 10, 17, 18] on the
properties of monovacancies in the bcc phases of Li and Na and we extend them to the case
of K, with special emphasis given to the calculation of formation entropies. These quantities
are extremely difficult to calculate, and there are only a few examples in the literature where
this problem was attacked byab initio calculations [7, 23–25]. We have performed such
calculations for Li [7], but unfortunately it turned out that there was an error in the analysis of
the numerical data, and we have therefore redone the calculations for Li and extended them
to Na and K. For Na we extended the calculations also to finite temperatures and determined
the vacancy migration entropy and volume, therein taking into account the contribution to the
migration volume from the pressure dependence of the migration entropy which was neglected
in former calculations [18] (see point (iv)). The results for the self-diffusion coefficients are
compared with experimental data.

2. Calculational procedure

2.1. Definition of the defect parameters

For a defect-mediated diffusion mechanism in a cubic crystal the tracer self-diffusion constant
is given by (for a review, see reference [15])

D(T ) = gf TceqDdefect. (1)

Here the geometrical factorg and the correlation factorf T are numerical factors which are
well known for various defect mechanisms and which are assumed to be independent ofT and
p in the following, andDdefectdenotes the diffusivity of the single defect. The concentration of
defects in thermal equilibrium,ceq, may be obtained from statistical mechanics, which yields
for crystals with equivalent lattice sites the equation

ceq= exp(−Gf /kBT ). (2)

Here the free enthalpy of defect formation is given by

Gf = H f − T S f = Ef + p�f − T S f (3)

whereH f , Ef , S f , and�f are the enthalpy, energy, entropy, and volume of defect formation
which describe the change in total enthalpy, energy, vibrational entropy, and volume of the
crystal per created defect.

The diffusivity Ddefect may be calculated within the framework of the transition-state
theory [16] as long as the diffusion of the defect may be described as a random sequence of
well-defined jumps, yielding

Ddefect= ν0a
2
0 exp(−Gm/kBT ). (4)

Hereν0 is the so-called attempt frequency anda0 denotes the lattice constant. The free enthalpy
of defect migration is given by

Gm = Hm − T Sm = Em + p�m − T Sm (5)
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whereHm, Em, Sm, and�m are the enthalpy, energy, entropy, and volume of migration. The
migration energy is thereby given by the energy difference between two static, fully relaxed
configurations, the first one with the moving atom in the saddle-point configuration between the
initial and the final state of the jump and the other with the atom in the initial potential minimum.
The migration entropySm has to be obtained from the vibrational frequencies of the system in
the initial state on the one hand and in the saddle point on the other hand, i.e., with the jumping
atom confined to the ridge of the potential energy separating the initial and the final state of
the jump. Thereby the motion of this atom along the coordinate responsible for the instability
of the saddle point is frozen, and the corresponding normal frequency is replaced by the
attempt frequencyν0 which in the transition-state theory is an arbitrary frequency [16,18,26].
Flynn [26] has fixedν0 by making contact with the dynamical theory of diffusion, yielding
ν0 =

√
3/5νDebye whereνDebye is the Debye frequency. The migration volume�m is the

difference in volume for the system on the one hand with the migrating atom in the static
fully relaxed saddle-point configuration and on the other hand in the static fully relaxed initial
configuration.

Combining equations (1)–(5) yields

D(T ) = D0 exp

(
−E

SD + p�SD

kBT

)
(6)

with

D0 = fgTν0a
2
0 exp

(
SSD

kB

)
(7)

andESD = Ef +Em,�SD = �f +�m, andSSD = S f + Sm.
In the following we calculate the above-defined defect parameters for the case of mono-

vacancies. We therein assumed (in accordance with the general belief ) thatSm
1V is close to

zero, which is certainly the weakest point in our theory, and we insert Flynn’sansatzfor ν0.
All the other quantities are calculatedab initio, i.e., without any adjustable parameter.

2.2. The supercell approach

The vacancy formation energy, entropy, and volume are calculated fromS f
1V = −∂Gf

1V/∂T ,
�f

1V = ∂Gf
1V/∂p, andEf

1V = Gf
1V + T S f

1V − p�f
1V. For the calculation ofGf

1V a supercell
formalism is applied (for details, see reference [5]), i.e., large supercells containingN sites
and one vacancy are arranged periodically. The quantityGf

1V then is determined from

Gf
1v(T , p) = G(N − 1, 1, T , p)−G(N, 0, T , p) +

1

N
G(N, 0, T , p). (8)

HereG(N − 1, 1, T , p) is the free enthalpy of the supercell containingN − 1 atoms and one
vacancy, whereasG(N, 0, T , p) is the free enthalpy of a perfect supercell withN atoms. The
free enthalpiesG are obtained by minimizing the function

G̃(T , p;V ) = F(T , V ) + pV (9)

with respect to the volume for fixedT andp. To do this, we calculate in the harmonic
approximation the free energy

F(T , V ) = E0(V ) +
1

2

∑
λ

h̄ωλ(V ) + kBT
∑
λ

ln(1− e−h̄ωλ(V )/kBT ) (10)

for various temperatures and volumes, fit Murnaghan’s equation of state (see, for instance,
reference [27]) to the data points, and use this equation of state for the minimization. In



Theory of self-diffusion in alkali metals: I 1175

equation (10)E0(V ) represents the static energy of the supercell and the quantitiesωλ denote
the phonon frequencies. Contributions toF(T , V )originating from electronic excitations were
neglected in our calculations. Indeed, we calculated the electronic contribution to the vacancy
formation entropy according to reference [28] for Li and found an extremely small contribution
only, in contrast to the behaviour of W [28].

The above-outlined procedure is very time consuming because it requires theab initio
calculation ofE0(V ) for the perfect lattice and for the supercell with a vacancy at various
volumes (wherein the structural relaxation of the atoms around the vacancy has to be
performed for each volume), and theab initio calculation of the phonon frequenciesωλ for
the perfect lattice and for the structurally relaxed supercell with a vacancy at various volumes.
Alternatively, we can calculate the free enthalpyGf

1V(T , p) of vacancy formation at given
pressurep from the free energyF f ,flc

1V of vacancy formation at fixed lattice constant according
to [29]

Gf
1V(T , p) = F f ,flc

1V + p�0(T , p) (11)

where�0 is the atomic volume of the ideal crystal. In the following we assume that

∂S
f ,flc
1v

∂�0

∣∣∣∣
T

= 0
∂E

f ,flc
1V

∂T

∣∣∣∣
�0

= 0
∂

∂T

(
βp�0

∂E
f ,flc
1V

∂�0

∣∣∣∣
T

)
= 0.

It will explicitly be shown that for the case of Na the first relation is nearly fulfilled (in contrast
to the case for the behaviour of ionic crystals [30]), and it has explicitly been demonstrated
in reference [4] that the second equation is approximately valid for the case of Li. With these
assumptions the following relations may be obtained [4,29,31]:

�f
1V(T , p) = −κT �0

(
∂E

f ,flc
1V

∂�0

∣∣∣∣
T

+ p

)
+�0 (12)

Ef
1V(T , p) = Ef ,flc

1V

(
a0(T = 0), T = 0

)− p(�f
1V −�0

)
(13)

S f
1V(T , p) = S f ,flc

1V

(
a0(T = 0), T

)
+
βp

κT

(
�f

1V −�0
)
. (14)

Here a0(T = 0) is the lattice constant at zero temperature,κT denotes the isothermal
compressibility, andEf ,flc

1V andS f ,flc
1V are given by

E
f ,flc
1V = E(N − 1, 1, a0)− E(N, 0, a0) +

1

N
E(N, 0, a0)− p(�f

1V −�0) (15)

S
f ,flc
1V = S(N − 1, 1, a0)− S(N, 0, a0) +

1

N
S(N, 0, a0) (16)

S = −∂F
∂T
= kB

∑
λ

{
h̄ωλ

kBT

[
exp

(
h̄ωλ

kBT

)
− 1

]−1

− ln

[
1− exp

(
− h̄ωλ
kBT

)]}
. (17)

E(N − 1, 1, a0) is the energy of a supercell for the fixed lattice constanta0, containingN − 1
atoms and one vacancy, andE(N, 0, a0) is the energy of the perfect supercell at the samea0 with
N atoms. The enormous advantage of equations (13), (14) is that they require only calculations
for one lattice constanta0(T = 0). Finally, the vacancy formation volume�f

1V(T = 0, p)
at a given pressure and zero temperature may be obtained by calculating the energies of the
supercell with a vacancy and of the perfect supercell as functions of the supercell volume and
determining the respective equilibrium volumesV ′ andV from p = −∂E/∂V , which yields
�f

1V(T = 0, p) = V ′(p)− V (p) +�0. The vacancy formation energy then is given by

Ef
1V(T = 0, p) = E(N − 1, 1, a′0(p))− E(N, 0, a0(p)) +

1

N
E(N, 0, a0(p)) (18)
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wherea′0(p) anda0(p) are the lattice constants corresponding toV ′(p) andV (p). Obviously,
equations (13), (18) yield slightly different results forT = 0, p = 0. Evaluating in
equation (15)E(N − 1, 1, a0(p = 0)) arounda′0(p = 0) yields

E(N − 1, 1, a′0) +
∂E

∂a0

∣∣∣∣
a′0

(a0 − a′0) = E(N − 1, 1, a′0)

because
∂E

∂a0

∣∣∣∣
a′0

= 0.

Thus, forT = p = 0 we have in linear orderEf
1V(0, 0) = Ef ,flc

1V as given by equation (13),
whereas equation (18) is correct to any order ofa0 − a′0.

Accordingly, the vacancy migration energy is given by

Em
1V(T = 0, p) = Es(N − 1, 1, as

0(p))− E(N − 1, 1, a′0(p)) (19)

where according to the transition-state theoryEs is the energy of the fully relaxed supercell
with the migrating atom in the saddle-point configuration, andas

0(p) is the lattice constant
corresponding to the equilibrium volumeV s(p) of the supercell. The migration volume is
then obtained from

�m
1V(T = 0, p) = V s(p)− V ′(p). (20)

Because in the calculations finite supercell sizes are used, the results have to be checked
for convergence with respect to the supercell size. ForEf

1V the effect of the finite supercell
size may be estimated because it originates (for reasonably large supercells) in many cases
mainly from the energy of elastic interaction between the periodically arranged vacancies. For
supercell sizes for which these elastic interaction effects may be obtained by the anisotropic
continuum theory, the vacancy formation energyEf

1V for isolated defects may be determined
from the formation energyEf

1V(L) obtained from calculations with finite cubic supercells of
linear dimensionsL via

Ef
1V = Ef

1V(L)−
A

L3
(21)

whereA is a fit parameter. For the vacancy formation entropy it is much more difficult to
estimate the finite-size effect.

For the calculation of the phonon frequenciesωλ = ωi(q), whereq denotes the phonon
wavevector andi labels the various phonon branches, we apply the direct force-constant
method [32–38] within the supercell approach. Thereby, single atoms are displaced in the
supercell, and the elementsφlkαl′k′β of the force-constant matrix are calculated from the resulting
forces on the surrounding atoms. Here the supercells are labelled by the indexl (l′), the basis
atoms in the supercells by the indexk (k′), and the Cartesian directions byα (β). Then the
dynamical matrix is determined from the force-constant matrix and the phonon frequencies are
obtained from the eigenvalues of the dynamical matrix. Because in a supercell geometry the
total force acting on an atom is given by a superposition of the forces exerted by all the atoms
in the neighbouring supercells which are equivalent to the displaced atom in the supercell
considered and therefore are simultaneously displaced, the calculated dynamical matrix in
general is different from the true dynamical matrix which would be obtained for infinitely large
supercells. Therefore the results have to be carefully checked with respect to the supercell
size. Finally, because the force constants between two atoms in general will decrease (not
necessarily monotonically) with increasing separation of the atoms, the force-constant matrix
will be truncated at some nearest-neighbour shell in order to reduce the computational effort,
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and the linear dimension of the supercell must be chosen to be larger than two times the
truncation radius.

From symmetry arguments, the number of displacements of various atoms required to
obtain all the desired elements of the force-constant matrix may be drastically reduced. When
we determine the couplings from the minimum possible number of calculations using the
symmetry arguments, the invariance of the force-constant matrix with respect to the symmetry
operations of the crystal point group is automatically guaranteed. Other invariances, however,
may be violated due to numerical inaccuracies and have to be restored afterwards:

(i) Because of the symmetry of the force-constant matrix:

φlkαl′k′β = φl
′k′β
lkα (22)

resulting from the principle of action= reaction, it should be irrelevant which of the
atoms(lk) and(l′k′) is displaced for a calculation of the coupling constant, but numer-
ically the results of the two calculations may differ slightly. To avoid this problem, we
always perform both types of calculation and obtain the final coupling constants from the
arithmetic averages.

(ii) If we displace all atoms by the same vectoru0, then the forces on all the atoms must
vanish, yielding∑

l′k′
φ0kα
l′k′β = φ0kα

0kβ +
∑
l′k′ 6=0k

φ0kα
l′k′β = 0 (23)

for all k, α, β, whereφ0kα
0kβ is the self-coupling constant. When performing the truncation

approximation, i.e., when setting all couplings to atoms outside the truncation sphere to
zero, equation (23) in general will be violated. As a result, the acoustic phonon frequencies
at q = 0 might be non-zero and imaginary. To restore the validity of equation (23), it
is tempting to replace the actually determinedφ0kα

0kβ by the negative of the sum on the
right-hand side of equation (23):

φ0kα
0kβ →−

∑
l′k′ 6=0k

φ0kα
l′k′β = Sαβk . (24)

The same procedure has to be performed forφ
0kβ
0kα , i.e.,

φ
0kβ
0kα →−

∑
l′k′ 6=0k

φ
0kβ
l′k′α = Sβαk . (25)

However, because of the truncation approximation, the quantitiesS
βα

k andSαβk may be
different, and thus the symmetry:

φ
0kβ
0kα = φ0kα

0kβ

of the force-constant matrix may be violated when calculating the self-coupling constants
via equations (24), (25). To avoid this problem, we scale all couplings

{φ0kα
0kβ , φ

0kα
l′k′β} or {φ0kβ

0kα, φ
0kβ
l′k′α}

by a factorS̃k/S
αβ

k or S̃k/S
βα

k with S̃k = 1
2(S

αβ

k + Sβαk ). Thereby another problem arises
because among these two sets of coupling constants there are some pairs of coupling
constantsφ0kα

l′k′β andφ0kβ
l′k′α which must be identical, and to make sure this is correct, these

couplings have to be scaled by both factors. As a result, the two sums appearing in
equations (24), (25) calculated from the scaled coupling constants are still not identical,
but the whole scaling procedure can be repeated until the sums approach the same value,
which then is assigned toφ0kα

0kβ andφ0kβ
0kα .
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(iii) Sluiter et al [38] considered further sum rules which have to be fulfilled by the coupling
constants in order to guarantee the invariance of the system against rigid-body rotations
and the symmetry of the tensor of elastic constants. We refrained from modifying the
numerically calculated coupling constants in order to fulfil these additional sum rules,
because in the sum rules the distances between the coupled atoms enter and hence the
coupling constants between further-distant atoms which are already small and numerically
less reliable are given a high weight.

(iv) Finally, the displacements which are given to the atoms to calculate the coupling constants
have to be chosen large enough in order to avoid numerical inaccuracies but small enough
to be compatible with the harmonic approximation. To correct for anharmonic effects, we
perform the calculations for positive and negative displacements of the same magnitude
u, and evaluate the forces according to1

2(F (u)− F(−u)).

2.3. Ab initio electron theory

The forces are calculated by theab initiodensity functional theory [39], applying the Hellmann–
Feynman theorem [40–43]. Two versions of the density functional theory are used, the
approach of Kohn and Sham [44] (KS) where the kinetic energy is calculated numerically
exactly via the (very time-consuming) self-consistent solution of one-particle Schrödinger
equations, and the orbital-free density functional theory [45,46] (OF-DFT) where the kinetic
energy is approximated by an appropriate functional of the electron density. We used the
linear-response Perrot functional [46] for Na and a quadratic response functional [47] for Li
and K. Because of this approximation the OF-DFT is less accurate than the KS method, and
therefore it so far has been successfully applied only to simple metals, e.g., Li, Na, K, Al.
We use the OF-DFT mainly for the sake of testing calculations concerning the investigation
of finite-size effects resulting from the use of finite supercell sizes, because this method is
computationally much less demanding and therefore much larger supercells can be considered
than in the KS approach.

Both in the KS approach and in OF-DFT we use the frozen-core approximation and
replace the real effective potential of the ionic core by a pseudopotential (see, for instance,
reference [42]). In the KS approach we apply norm-conserving non-localab initio pseudo-
potentials constructed following Vanderbilt [48], including the partial-core correction [49],
and we evaluate the crystal wavefunction from plane waves. In OF-DFT we use local pseudo-
potentials. For Na we apply the empirical pseudopotentials of Topp and Hopfield [50], with
the consequence that the calculations for Na cannot be denoted asab initiocalculations. For Li
and K we use the local pseudopotentials constructed fromab initiopseudopotentials (including
the partial-core correction for the case of K) according to reference [51].

Because the calculation, especially that of the coupling constants, is numerically rather
delicate, the convergence of the results with respect to all the convergence parameters of the
methods (e.g., the cut-off energyEc characterizing the number of plane waves, or the number
of k-points used for the sampling of the Brillouin zone) has to be tested very carefully.

3. Cohesive properties

Table 1 shows the theoretical results for the equilibrium lattice constant and the bulk modulus
at zero temperature, in comparison with experimental data. The KS calculations yield the well-
known overbinding of the local-density approximation, i.e., a slightly too small lattice constant
and a slightly too large bulk modulus. Please note also the differences of the results from the
KS calculation and the OF-DFT for the lattice constants which probably arise not just from
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Table 1. Theoretical results for the equilibrium lattice constanta0 (in atomic units, au) and the
bulk modulusB at zero temperature. The experimental value forB of 7Li was extrapolated from
data above 100 K to 0 K.

a0 (au) B (GPa)

KS OF-DFT Experiments KS Experiments

Li 6.34 6.72 6.57 [52] 15.2 12.95 [55]
(20 K)

Na 7.65 8.15 8.00 [54] 9.1 7.29 [53]
(78 K) (78 K)

K 9.57 9.60 9.88 [54] 4.5 3.783 [56]
(5 K) (4.2 K)

theansatzfor the kinetic energy of the OF-DFT but also from the different pseudopotentials
used for the KS approach and for the OF-DFT.

4. Formation and migration energies and volumes

The alkali metals are often perceived as being among the simplest nearly free-electron metals
(which seems to be justified for Na and K but definitely not for Li). Therefore many calculations
of the vacancy formation energies used semiempirical approaches starting from the free-
electron gas; for a critical review see [57]. Whereas these calculations significantly contributed
to a better qualitative understanding of the defect energetics, the quantitative results depend
sensitively on the details of the calculations (see tables 1, 2 of [57]). For a reliable calculation
of the defect parameters therefore, anab initio calculation is preferable.

The results of the KS calculations forEf ,Em,�f , and�m at zero pressure and temperature
obtained in the present paper and in former studies are given in table 2, together with exp-
erimental data. The results from the OF-DFT are given in parentheses. For Na there is a good
agreement forEf between the data from the KS approach and OF-DFT, whereas for Li there is a
considerable discrepancy. Again we want to note that this discrepancy probably does not arise
exclusively from theansatzfor the kinetic energy of the OF-DFT but also results from the use
of different pseudopotentials. There is a good agreement of the KS results with the available
experimental data forEf andESD. Experimentally, it turns out that the Arrhenius plots for
the diffusion coefficients (omitting the very low-temperature data of references [13, 14]) are
often curved and must be represented by a superposition of two or three exponentials with
different activation energies. The quoted values ofESD refer to the respective smallest of these
activation energies, and it is often assumed that the corresponding exponential describes the
contribution of monovacancies to self-diffusion. For�SD the agreement is also reasonable in
view of the relatively large error limits of the calculated and probably also of the measured
data.

5. Phonon spectra of the ideal crystals

Having in mind the nearly free-electron character of the alkali metals (see section 4), most of the
former phonon calculations [59] introduced pseudopotentials for the electron–ion interaction
and approximated the electronic response due to an atomic displacement by the one of a
homogeneous electron gas. (The linear electronic response of the wavefunction in a realistic
crystal potential of Li and K was calculated in reference [60], but this theory contains a
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Table 2. Results from the KS formalism and experimental results for the formation energyEf and
the migration energyEm (in eV), and for the formation volume�f and the migration volume�m

at zero pressure and zero temperature (in units of the atomic volume�0 of the ideal crystal). The
numbers in parentheses denote the results from the OF-DFT. The estimated error limits for the KS
calculations are±0.02 eV or±0.01 eV forEf orEm, and±0.05�0 for �f and�m.

Li Na K

Ef Theory 0.53 0.34 [5] 0.30
(0.32) (0.32)

Experiment — 0.354, 0.36 [3] —

Em Theory 0.055 [7] 0.054 [10] 0.051
(0.026)

Experiment — — —

ESD Theory 0.585 0.394 0.351
(0.346)

Experiment 0.60 [9] 0.391 [14] 0.386 [58]

�f Theory 0.53 0.5 [18] 0.45
(0.49) (0.47)

Experiment — — —

�m Theory −0.2 [18] −0.01 [18] —
(0.00)

Experiment — — —

�SD Theory 0.33 0.49 —
(0.47)

Experiment 0.28 [19] 0.32 [12] —

certain number of parameters (three for Li and seven for K) which were adjusted by a fit of
calculated phonon frequencies to experimental ones). In most of these papers the influence
of the various assumptions entering this type of theory is discussed extensively. Because the
results sometimes depend critically on the assumptions, anab initio approach is desirable.

In reference [32] we reported the phonon spectra of ideal Li, Na, and K crystals calculated
by the sameab initio procedure as is used in the present paper (direct force-constant method,
supercell approach, KS formalism,ab initio pseudopotentials). Most elements of the force-
constant matrix were calculated with a cubic supercell containing 54 atoms, apart from the
transverse couplings to the atoms in the fourth-nearest-neighbour shell which vanish in a 54-
atom supercell and which therefore were determined with an elongated 16-atom supercell.
The calculations were performed for the zero-temperature equilibrium lattice constants of the
ab initio calculations which are smaller than the experimental lattice constants. Apart from a
constant scale factor for each material, there was a very good agreement between theoretical
and experimental data for the dispersion curves.

In the present paper we report on analogous calculations at the experimental lattice
constants of the temperatures for which the phonon spectra were obtained experimentally.
Furthermore, we again discuss the finite-size effects by also performing calculations for a
128-atom supercell. Unlike in [32], we did not determine those couplings which are zero for
a specific supercell because of symmetry arguments by another type of supercell calculation
(for instance, the elongated 16-atom supercell), but we kept the value of zero for them.

For Li we again obtained a good agreement with the experimental data when we performed
the calculations for a 54-atom supercell including all couplings up to the fifth-nearest-neighbour
shell. When a 128-atom supercell was used with the same range of couplings the results
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changed a bit, indicating the finite-size effect for those couplings. However, the results
deteriorated when we included the couplings to the eighth-nearest-neighbour shell or all
couplings which fit into the supercell, and we then obtained imaginary frequencies near the
0 point (figure 1, to be compared with figure 1 of reference [32] for the results for a 54-
atom supercell). To clarify the reason for this, we performed frozen-phonon calculations [32]
for some phonon wavelengths. The advantage of such a frozen-phonon calculation is that it
includes all couplings up to infinity, i.e., no finite-size effects appear. From these calculations
we found no indications for imaginary frequencies near the0 point. This means that the
imaginary frequencies obtained by the direct force-constant method are not due to a failure of
the local-density approximation but due to the finite-size effect. According to our calculations
the coupling constants in Li decrease considerably more slowly with increasing separation of
the atoms than for Na or K, and therefore the finite-size effect is more important. We found
that for Na and K the results for the coupling constants from the KS approach and OF-DFT
agreed quite well, whereas for Li the coupling strengths obtained by the OF-DFT decease more
rapidly than those from the more accurate KS calculations. This in turn means that we cannot
use the OF-DFT to estimate the residual finite-size effects in Li by performing calculations for
supercells with more than 128 atoms. Altogether, we must conclude that in Li there are far-
reaching couplings and that therefore calculations for supercells with far more than 128 atoms

Figure 1. Phonon dispersion curves for bcc Li as calculated by the KS formalism (Ec = 8.5 Ryd)
for a 128-atom supercell at the experimental lattice constant atT = 293 K, a0 = 6.634 au [61].
Couplings up to the eighth-nearest-neighbour shell (dotted lines) and all couplings which fit in
the supercell (full lines) are included. The data are compared with results from inelastic neutron
scattering [61] atT = 293 K (◦: longitudinal branches;•: transverse branches).
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would be required for a reliable calculation of the phonon dispersion curves. The previously
performed calculations with 54-atom supercells (figure 1 of [32]) yielded reasonable results
as compared to the data from inelastic neutron scattering, but the results become worse when
including more couplings.

The situation is simpler for the case of Na and K, where the coupling strengths decrease
more quickly with increasing distance and where the results from the KS approach and OF-
DFT agree much better, with the result that the OF-DFT can be used to estimate the finite-
size effects. (The KS calculations for Na and K are much more time consuming than those
for Li because of the larger lattice constants which require more plane waves in the basis
set for a givenEc.) Figures 2 and 4 exhibit the results for Na and K obtained by the KS
formalism for a 54-atom supercell including the couplings up to the fifth-nearest-neighbour
shell at the experimental lattice constant and at the temperatures of the respective inelastic
neutron scattering experiments [62, 63] and at the zero-temperatureab initio lattice constant.
Whereas the frequencies for theab initio constant are too large and those for the experimental
lattice constant are too small, the form of the dispersion curves varies only slightly with varying
lattice constant, and the calculation is able to reproduce the phonon dispersions quite well apart
from a constant scale factor (see also reference [32]). With the OF-DFT we obtained only slight
changes when going from a 54-atom supercell to a 128-atom supercell, i.e., the results from

Figure 2. Phonon dispersion curves for bcc Na as calculated by the KS formalism (Ec = 8.5 Ryd)
for a 54-atom supercell including the couplings up to the fifth-nearest-neighbour shell, for
calculations at the experimental lattice constant (full lines) atT = 90 K, a0 = 7.99 au [62],
and at the zero-temperatureab initio lattice constant (dashed lines), in comparison with data from
inelastic neutron scattering [62] atT = 90 K (◦: longitudinal branches;•: transverse branches).
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the 54-atom supercell are already well converged with respect to the supercell size. Figures 3
and 5 show that there is a very good agreement between theory and experiment for Na and a
good agreement for K when applying the OF-DFT for a 128-atom supercell at the respective
experimental lattice constants. Table 3 presents the results for the coupling constantsφNαβ of a
given atom in theN th-nearest-neighbour shell. The table records all coupling constants which
are non-zero for symmetry reasons and which can be determined in the 54-atom supercell
used for the calculations. The theoretical results are compared with the Born–von Kármán
couplings which are obtained by fitting an as small as possible number of such parameters to
the experimental data [62, 63]. We do not present the data for Li because they are spoiled by
the above-discussed finite-size effects.

Figure 3. Phonon dispersion curves for bcc Na as calculated by the OF-DFT at the experimental
lattice constant atT = 90 K, a0 = 7.99 au [62], for a 128-atom supercell including the couplings
up to the fifth-nearest-neighbour shell (dotted lines) or all couplings which fit into the supercell
(full lines). The data are compared with results from inelastic neutron scattering experiments [62]
atT = 90 K (◦: longitudinal branches;•: transverse branches).

6. The vacancy formation entropy at zero pressure

In this section we calculate the vacancy formation entropyS f
1V(T , p = 0) according to equ-

ation (14) from the vacancy formation entropy at fixed lattice constant,S
f ,flc
1V , according to

equations (16), (12). The determination of the phonon frequenciesωλ for the supercell with
a vacancy is much more complicated than for the perfect supercell. In the latter case one
displacement of the central atom of the supercell yields all elements of the force-constant
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Figure 4. Phonon dispersion curves for bcc K as calculated by the KS formalism (Ec = 10 Ryd)
for a 54-atom supercell including the couplings up to the fifth-nearest-neighbour shell, for calcul-
ations at the experimental lattice constant (full lines) atT = 9 K [63], a0 = 9.87 au, and at the
zero-temperatureab initio lattice constant (dashed lines), in comparison with data from inelastic
neutron scattering [63] atT = 9 K (◦: longitudinal branches;•: transverse branches).

matrix for symmetry reasons [32], whereas for the supercell with a vacancy 17 different atom
displacements are required. Furthermore, the configurations with the displaced atoms are of
low symmetry and therefore the electronic structure calculation is more demanding.

As outlined in section 5 the reliable determination of phonon frequencies for Li with the KS
formalism requires supercell sizes (more than 128 atoms) which are beyond our calculational
capability. Furthermore, because the OF-DFT yields coupling strengths for Li which decay
more rapidly than those from the KS method, we cannot use the former method to study the
finite-size effects. We therefore are not able to give reliable results for the vacancy formation
entropy for Li, and we confine ourselves to Na and K for which the phonon frequencies of the
perfect crystals could be accurately obtained with supercells containing 54 sites by including
the couplings up to the fifth-nearest-neighbour shell. As outlined in section 5, the form of the
dispersion curves of these materials varies only slightly with varying lattice constant. From
equations (16), (17) the high-temperature limit of the formation entropy can be obtained,
yielding S f ,flc

1V = −kB
∑

λ ln(ω′λ/ωλ), whereω′λ andωλ denote the phonon frequencies in the
system with and without vacancies, and therefore a constant scale factor for the frequencies
which keeps the form of the dispersion curves invariant drops out and does not influence the
high-temperature limit of the formation entropy. All calculations were performed at the lattice
constants as obtained by the KS formalism (table 1).
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Table 3. Results for the coupling constantsφNαβ (in N m−1) of Na and K as obtained from a
KS supercell calculation with 54 atoms at the experimental lattice constant, in comparison with
Born–von Ḱarmán couplings fitted to the experimental phonon dispersion curves [62,63].

Na K

φNαβ Theory Experiment Theory Experiment

1 xx 1.017 1.178 0.680 0.7688
1 xy 1.034 1.132 0.724 0.8805

2 xx −0.015 0.472 0.170 0.4042
2 yy 0.139 0.104 0.060 0.0296

3 xx −0.032 −0.038 −0.036 −0.0418
3 xy −0.031 −0.065 −0.022 −0.0455
3 zz −0.018 0.000 −0.010 0.0038

4 xx 0.052 0.052 0.025 0.0213
4 yy −0.001 −0.007 <0.0005 −0.0029
4 yz 0.008 0.003 0.001 0.0030

5 xx 0.020 0.017 0.005 0.0091
5 xy 0.009 0.033 0.004 0.0062

7 xx 0.001 — −0.002 —
7 zz 0.001 — <0.0005 —

10xx <0.0005 — <0.0005 —

Table 4 presents the results for Na from the KS formalism (a supercell with 54 sites, all
couplings up to fifth-nearest-neighbour shell included,Ec = 10 Ryd) for the vibrational
entropy of the perfect supercell and the supercell with a vacancy and for the formation
entropyS f ,flc

1V . As in the case of Li [7], the formation entropy increases monotonically with
increasing temperature and attains a nearly constant high-temperature value (in the case of
Na for T > 100 K). From test calculations we estimate the error arising from the use of a
finite Ec, a finite number ofk-points for the Brillouin zone sampling, and the finite number
of frequencies considered in the sum of equation (17) to be about 0.2kB. To obtain the
formation entropyS f

1V(T , p = 0) from S
f ,flc
1V (a0(T = 0), T ) according to equation (14) we

usedβp = 2.06× 10−4 K−1 [64] for the high-temperature range,κT = 1.09× 10−10 Pa−1

according to our KS calculations (table 1), and�f
1V = 0.5�0 [18], yieldingS f

1V(T , p = 0) =
S

f ,flc
1V (a0(T = 0), T ) − 2.28 kB and a high-temperature value ofS f

1V(T , p = 0) = 1.36 kB.
This value is considerably smaller than the various values obtained from various measurements

Table 4. Results for bcc Na from KS calculations for a supercell with 54 sites for the vibrational
entropiesS(54, 0) andS(53, 1) of the perfect supercell and the supercell with a vacancy and for
Sflc

1V (all in units ofkB) as a function of temperatureT (in K). The melting temperature of Na is
371 K.

T S(54, 0) S(53, 1) S
f ,flc
1V

10 1.158 1.380 0.243
100 142.250 142.954 3.339
200 245.392 244.426 3.578
300 309.287 307.185 3.626
370 342.765 340.057 3.640
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Figure 5. Phonon dispersion curves for bcc K as calculated by the OF-DFT at the experimental
lattice constant atT = 9 K [63], a0 = 9.87 au, for a 128-atom supercell including couplings up
to the fifth-nearest-neighbour shell (dotted lines) or all couplings which fit into the supercell (full
lines). The data are compared with results from inelastic neutron scattering experiments [63] at
T = 9 K (◦: longitudinal branches;•: transverse branches).

of the differential thermal expansion when the experimental data are interpreted by assuming
only one type of defect (3.9± 0.7 kB 6 S f

1V 6 5.8± 1.1 kB; for a survey see reference [5]).
To test for residual finite-size effects we performed calculations with the OF-DFT for

supercells with 54 atoms and 128 atoms, including the couplings up to the fifth-nearest-
neighbour shell. We obtained very similar results (table 5), and we may therefore tentatively
assume that the residual finite-size effects are small for Na when using a 54-atom supercell.
To illustrate the finite-size effect further we calculated the atom-resolved density of states for

Table 5. Results forSf ,flc
1V (in kB) for bcc Na from the OF-DFT for supercells with 54 and 128 sites,

as functions of temperatureT (in K). The melting temperature of Na is 371 K.

T S
f ,flc
1V (54) S

f ,flc
1V (128)

10 0.579 0.587
100 4.305 4.313
200 4.542 4.564
300 4.589 4.614
370 4.602 4.628



Theory of self-diffusion in alkali metals: I 1187

the atoms labelled byk according to

nk(ω) =
∑
i,q

δ(ω − ωi(q))
a2
k,x(q, i) + a2

k,y(q, i) + a2
k,z(q, i)

|a(q, i)|2 . (26)

Herea(q, i) is the eigenvector corresponding to the eigenvalueωλ = ω(q, i) obtained from
the eigenvalue equation for the dynamical matrix. For an isolated vacancy we would expect
that the atom-resolved density of states approaches with increasing distance from the vacancy
more and more closely to the density-of-states curve for the perfect crystal. It becomes obvious
from figure 6 that for the nearest neighbour of the vacancy there are additional low-frequency
modes which do not appear in the perfect crystal, whereas the high-frequency peak of the perfect
crystal is wiped out. From the second-nearest neighbour to the ninth-nearest neighbour the
form of the atom-resolved density of states approaches more and more closely the form of
the density-of-states curve for the perfect crystal. In contrast to our expectation the deviations
from the perfect crystal become again more pronounced for further-distant atoms and are quite
large for the outermost 17th-nearest-neighbour shell. There is one such atom per supercell,
which is located in the middle of a cube for which all corner points are occupied by vacancies,
i.e., it is connected with the corner points by atom rows along〈111〉. Due to the structural
relaxation around the vacancy (which is strongest along〈111〉), all atoms in the neighbourhood
move away from this atom resulting in a softening of the local modes for this atom as compared
to the perfect crystal, and this is definitely a residual finite-size effect.

To illustrate the contributions to the formation entropy from the various neighbour shells
of the vacancy we define an atom-resolved vibrational entropy according to

Sk =
∑
i,q

S(q, i)
a2
k,x(q, i) + a2

k,y(q, i) + a2
k,z(q, i)

|a(q, i)|2 (27)

whereSλ = S(q, i) is the contribution of the eigenmodeλ = (q, i) according to equation (17).
FromSk the contribution of the whole shell to which atomk belongs is given byNkSk, where
Nk is the number of atoms per supercell in that shell. It is obvious from table 6 that there are
considerable contributions to the formation entropyS f

1V in addition to that from the nearest-
neighbour shell. More than half of the total formation entropy is contributed by further-distant
shells. The contribution of the outermost shell is small in spite of the drastically modified atom-
resolved density of states. Nevertheless, those shells which do not appear in the supercell with
54 sites (shells 6, 8, 9, 11, 13, 17) contribute 0.763kB. Because according to table 5 the results
for the totalSflc

1V from the two supercell sizes are rather similar, these additional contributions
of the outer shells must be compensated by differences in the contributions of the inner shells
for the two supercell sizes. Altogether, this shows that there are still residual finite-size effects
for the 54-atom supercell, which—however—approximately compensate each other, so the
final result forS f ,flc

1V appears to be nearly converged with respect to the supercell size.

Table 6. Contributions of thekth-nearest-neighbour shell toSf ,flc
1V (in units of kB) in bcc Na as

calculated using the OF-DFT for a supercell with 128 sites. The total value ofSflc
1V is 4.61kB.

Shell 1 2 3 4 5 6 7 8 9 10 11 13 17

Contribution toSf ,flc
1V 2.11−0.39 0.32 0.24 0.64−0.17 0.53 0.36 0.22 0.42 0.07 0.15 0.11

Table 7 gives the results forS f ,flc
1V (in units ofkB) for K as obtained from the KS calculation

(a supercell with 54 sites, all couplings up to the fifth-nearest-neighbour shell included,
Ec = 10 Ryd). To obtain the formation entropyS f

1V(T , p = 0) from S
f ,flc
1V (a0(T = 0), T )
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Figure 6. The atom-resolved phonon density of states for atoms of thekth-nearest-neighbour shell
around a vacancy in Na. The calculations were performed using the OF-DFT for a supercell with
128 sites.
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Table 7. Results forSf ,flc
1V (in units of kB) for bcc K from KS calculations for a supercell with

54 sites as a function of temperature (in K). The melting temperature of K is 337 K.

T S
f ,flc
1V

10 0.769
100 3.543
200 3.635
300 3.654

according to equation (14), we usedβp = 2.49× 10−4 K−1 (at T ≈ 20 ◦C [65]), κT =
(B)−1 = (4.5 GPa)−1 according to our KS calculations (table 1), and�f

1V = 0.45�0 from
our KS calculations (table 2), yielding a high-temperature value ofS f

1V(T , p = 0) = 0.78kB.

7. The self-diffusion coefficient at zero pressure

In this section we calculate the self-diffusion coefficientD(T ) for self-diffusion via mono-
vacancies according to equations (6), (7), assuming that the vacancy migration entropy is zero
and inserting Flynn’sansatzfor the attempt frequency,ν0 =

√
3/5νDebye. Inserting the Debye

frequenciesνDebye= 3.7 THz [62] for Na and 2.1 THz for K [63] we obtained from our KS
calculations

D(T ,Na) = 1.32× 10−2 cm2 s−1 exp

(
−4526 K

T

)
(28)

D(T ,K) = 6.5× 10−3 cm2 s−1 exp

(
−4026 K

T

)
. (29)

In figure 7 our theoretical results for bcc Na are compared with the experimental data
from radiotracer experiments [12], and there is an excellent agreement for the low-temperature

Figure 7. Comparison of our calculated self-diffusion coefficient for bcc Na from the KS formalism
(full line) with the experimental data from radiotracer experiments [12].
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range, where it is commonly assumed that monovacancies dominate the self-diffusion. The
agreement holds both for the slope of the plot of lnD versus 1/T , i.e., for the activation
energyESD for self-diffusion, and for the absolute values. For K (figure 8) our absolute values
for D(T ) are smaller than the experimental values. Fitting the experimental data with one
exponential yields [58]ESD = 0.406 eV, whereas fitting with two exponentials yields [58] for
the process with the lower activation energy a value ofESD = 0.386 eV, both values being
larger than our calculated value ofESD = 0.351 eV.

Figure 8. Comparison of our calculated self-diffusion coefficient for bcc K from the KS formalism
(full line) with the experimental data from radiotracer experiments [58].

For Li we did not obtain a reliable result forS f
1V (section 6) and we therefore do not present

our data forD(T ). The calculated activation energy for self-diffusion via monovacancies is
in good agreement with the experimentally obtained activation energy; see table 2.

8. Formation entropy and volume at finite pressure

For the case of Na we calculated by means of the OF-DFT for a supercell with 54 sites using
equations (8)–(10) the free enthalpy of vacancy formationGf

1V(T , p) and thenS f
1V(T , p) =

−∂Gf
1V/∂T (figure 9) and�f

1V(T , p) = ∂Gf
1V/∂p (figure 10). The vacancy formation entropy

decreases to zero for zero temperature, but it depends only slightly on the pressure, and therefore
the contribution of∂S f

1V/∂p to the formation volume is very small, in contrast to our former
conjecture [18]—see also point (iv) of the introduction—and in contrast to the behaviour
of ionic crystals. In contrast, the vacancy formation volume is nearly independent of the
temperature, but it strongly decreases with increasing pressure: atT = 0 K it decreases from
0.43�0 atp = 0 to 0.30�0 atp = 2 GPa. (Close to the melting temperature,�f

1V decreases
even more strongly and attains the value of 0.25�0 at 2 GPa.) This agrees well with our
former KS calculations at zero temperature [18] which found a decrease from 0.5�0 atp = 0
to 0.29�0 at p = 2.8 GPa, and it is also at least qualitatively in line with the experimental
observation (point (iv) of the introduction).
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Figure 9. Sf
1V(T , p) for bcc Na as calculated using the OF-DFT. The contour lines are those for

constantSf
1V.

9. Summary and conclusions

We calculated, by means of a combination of theab initio electron theory in a supercell
approach with the transition-state theory, the defect formation and migration parameters and
the diffusion coefficients for self-diffusion via monovacancies for bcc Li, Na, and K. Therein
the following assumptions and approximations were made:

(1) The formation entropies were calculated in the harmonic approximation. Because the
vacancy migration energies are very small we can imagine that the lattice vibrations
become anharmonic for certain directions with a softer potential well than assumed in the
harmonic approximation and that this may increase the formation entropies.

(2) We assume that the results for the total vacancy formation entropy of Na and K are well
converged with respect to the supercell size, although the single contributions of the various
neighbour shells are not yet totally converged.

(3) We assume the validity of the transition-state theory for the calculation of the defect
migration parameters in spite of the low migration energies (see point (ii) of the
introduction).

(4) The migration entropy is neglected.
(5) We insert Flynn’sansatzν0 =

√
3/5νDebyefor the attempt frequencyν0, which is an open

parameter in the transition-state theory.
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Figure 10.�f
1V(T , p) for bcc Na as calculated using the OF-DFT. The contour lines are those for

constant�f
1V(T , p).

The following results were obtained:

(a) The vacancy formation energies are 0.53, 0.34, and 0.30 eV for Li, Na, and K with
an estimated numerical uncertainty of±0.02 eV. Reliable experimental values are only
available for Na and are in good agreement with the theoretical result.

(b) The migration energies are about 0.05 eV for all three materials with an estimated
numerical uncertainty of±0.01 eV.

(c) The calculated activation energies for self-diffusion via monovacancies are 0.585, 0.394,
and 0.351 eV with an estimated numerical uncertainty of±0.03 eV. They agree well
with the experimental data for the contribution of the self-diffusion mechanism with the
lowest activation energy (excluding the data at very low temperatures—see point (i) of
the introduction).

(d) The calculated formation entropies at high temperatures are 1.36 and 0.78kB for Na and
K, values which are considerably smaller than the formation entropies obtained for Na by
measurements of the differential thermal expansion (3.9± 0.7 kB 6 S f

1V 6 5.8± 1.1 kB).
Because of points (1), (2) of this section, it is very hard to estimate the numerical
uncertainty of our calculated results, but we are convinced that the converged value for
Na which would be obtained from a calculation with a very large supercell would be
considerably smaller than the experimental values.

(e) For Na the absolute values of the diffusion coefficient as a function of temperature
agree well with experimental data from radiotracer experiments. For K our calculated
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values are smaller than the experimental values, except for low temperatures. It remains
to be investigated whether the deviations at high temperatures can be attributed to the
contribution of another mechanism.

(f ) The formation volumes are about 0.5�0 for all three materials with an estimated numerical
uncertainty of±0.05�0.

(g) The migration volumes are−0.2 and−0.01�0 for Li and Na with an estimated numer-
ical uncertainty of±0.05�0. The systematic error arising from the application of the
transition-state theory in spite of the low vacancy migration energy cannot be estimated.

(h) The activation volumes at zero pressure are 0.33 and 0.49�0 for Li and Na. In view of the
large uncertainties for the theoretical and the experimental determination, the agreement
with the experimental values is satisfactory.

(i) The formation entropy of Na depends only slightly on pressure, and thus there is only
a very small contribution of∂S f

1V/∂p to the formation volume, in contrast to a former
conjecture (see point (iv) of the introduction).

(k) The formation volume decreases strongly with increasing pressure in at least qualitative
agreement with the experiments (see point (iv) of the introduction).

To summarize, there is a good agreement of our calculated results for monovacancies
with available experimental data for the formation and activation parameters at intermediate
temperatures, except for the formation entropy. For this quantity the theory yields considerably
smaller values than expected from the experimental data for Na, but it must be kept in mind that
it is extremely difficult to determine this parameter both theoretically (see points (1), (2)) and
experimentally (as becomes obvious from the large scatter of experimental data). Altogether,
there seems to be no doubt that monovacancies provide the dominant contribution to the self-
diffusion in Li, Na, and K at intermediate temperatures.
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[6] Göltz G, Heidemann A, Mehrer H, Seeger A and Wolf D 1980Phil. Mag.A 41723
[7] Frank W, Breier U, Els̈asser C and F̈ahnle M 1996Phys. Rev. Lett.77518
[8] Lodding A, Mundy J N and Ott A 1970Phys. Status Solidi38559
[9] Feinauer A 1993PhD ThesisUniversity of Stuttgart, p 68

[10] Breier U 1996PhD ThesisUniversity of Stuttgart
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[40] Hellmann H 1937Einführung in die Quantenchemie(Leipzig: Deuticke)
[41] Feynman R P 1939Phys. Rev.56340
[42] Ihm J, Zunger A and Cohen M L 1979J. Phys. C: Solid State Phys.124409
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